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D I F F R A C T I O N  O F  I N T E R N A L  W A V E S  BY A C I R C U L A R  C Y L I N D E R  

N E A R  T H E  P Y C N O C L I N E  

N .  V .  G a v r i l o v  a n d  E .  V .  E r m a n y u k  UDC 532.59 

Propagation of  internal waves over a circular cylinder under the conditions of a continuous 
stratification characterized by the presence of  a high-gradient density layer (the pycnocline) 
of  finite thickness is studied. The dependences of  the coefficient of wave propagation on the 
wavelength of  the first-mode incident wave for various thicknesses of the pycnocline are obtained. 
In the diffraction of internal waves, substantial nonlinear effects are shown to occur, which 
result in the appearance of  waves of double oscillation frequency compared to the frequency of 
the incident waves. The generation coefficient for  these waves is found. 

Diffraction of surface waves by a submerged circular cylinder is studied in sufficient detail. The absence 
of reflected waves in a fluid of finite depth is shown by Dean [1]. A theoretical description of this phenomenon 
within the framework of the dipole approximation was given by Tyvand [2]. In the general case, for a finite 
depth of the fluid, wave reflection occur. For certain discrete wavelengths of the incident waves, however, no 
reflection occurs [3, 4]. 

Linton and McIver [5] studied the diffraction of internal waves from a circular cylinder submerged into 
a two-layered fluid with a density jump at the interface. It was shown that if the circular cylinder is submerged 
into the lower, infinitely deep layer, no reflection of the surface or internal modes takes place. If the cylinder 
is placed into the upper layer of finite depth, the partial reflection of waves is observed. 

Diffraction of internal waves by underwater obstacles under the conditions of continuous stratification 
shows a number of specific features brought about by excitation of the higher modes of the wave motion in 
the fluid [6]. A qualitative description of the phenomena observed is given, for example, in [7, 8]. 

The present work differs from all the previous studies in that a new method is used here to study the 
diffraction of internal waves. The essence of this method consists in simultaneous registration of the waves 
that pass over the cylinder and the waves that propagate in the absence of an obstacle. 

The tests were carried out in a hydrodynamic 4.5 • 0.2 x 0.8 m tray (Fig.l) which was filled with two 
layers of miscible fluids of different densities. First, the lower layer (the aqueous glycerin solution) of density 
p2 = 1.0095 g/cm 3 and depth h2 -- 30 cm was poured onto the tray. Then, the upper layer (distilled water) 
of density pl = 0.999 g /cm 3 and a certain depth hi was poured using spreading drafts that floated on the 
free surface (marked with the triangle). Over the tray, a certain steady-state density distribution p(z) was 
reached, which in the coordinate system attached to the free surface (with the z and x axes directed upward 
and in the direction of wave propagation, respectively) was approximated by the expression 

cpl 2(z + hi) p2 3r pl p2 - pl 
p(z) = po - T tanh ~ , p0 = 2 ' ~ = p l  

With time, only the characteristic thickness ~ of the pycnocline varied owing to glycerin diffusion. 
The density distribution p(z), which was used to determine the parameter ~, was measured with probes 

3 with a horizontally installed sensitive element [8]. Because of the smallness of the diffusion coefficient of 
glycerin, the thickness ~ of the diffuse region varied insignificantly during one series of tests and was therefore 
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Fig. 1 

assumed to be constant. The calibration measurements carried out prior and after the experiments showed 
that the increase in ~ was within 0.2 cm. 

The waves were generated by a wave generator 1 which had the shape of a semicylinder and executed 
sinusoidal oscillations along the end wall of the tray. The amplitude of the oscillations was A = 0.6 cm, their 
frequency w being variable. At the other end edge of the tray, a wave suppressor 4 was provided, which had 
the shape of a flat plane inclined at an angle of 4 ~ to the horizontal, with its lower end dipped by 4 cm below 
the conventional interface of the layers for which p - p0. 

Measurements of the coefficients of wave reflection and propagation for the surface waves over an 
obstacle are carried out, as a rule, by comparing the amplitudes of the waves measured at certain fixed points 
of the wave tray in the absence and presence of an obstacle. The procedure of [9] can also be used, which is 
based on an a priori assumption as to the shape of the free surface described in the far field by a superposition 
of the incident waves and a system of waves caused by diffraction. In the case of the internal waves in a 
continuously stratified fluid, the problem appeared to be more complicated owing to the necessity for exact 
reproduction of all parameters of the system, in particular, the thickness $ of the pycnocline. Therefore, in 
the present tests, the parameters of the waves behind the cylinder and those of the wave propagating in the 
absence of an obstacle were recorded simultaneously. To do this, a thin vertical partition (not shown in Fig.l) 
was provided that was installed along the tray and divided it into two equal parts. In one part of the tray, a 
rigidly fixed cylinder of diameter d = 6 cm was installed 170 cm from the wave generator, whose center was 
dipped by a distance h below the conventional interface. The vertical partition began 30 cm from the end 
wall of the tray. 

The waves were measured by two wavemeters 2 of the resistive type [7] with vertically aligned sensitive 
elements. The wavemeters were spaced by the same distance from the wave generator in each part of the tray. 
One wavemeter measured the parameters of the undisturbed wave system, and the other the parameters of 
the waves that have passed over the circular cylinder. The distance from the plane at which the wavemeters 
were installed to the cylinder axis was 30 cm. 

The wavemeters measured the electrical conductance of the medium situated between two vertical 
electrodes. The output  signal e(t) of the voltmeter installed at a certain point with the horizontal coordinate 
x = x0 is related to the instantaneous value of density p.(x, z, t) by the dependence 

z 2  

e(t) = + / p,(x0, z, t) dz, 
Zl  

where e0 and el are constants and zl and z2 are the vertical coordinates of the lower and upper ends of the 
electrodes. Under the general assumptions of the theory of internal waves in a continuously stratified fluid 
[10, 11], the instantaneous density at a certain point can be represented in the form p. = p(z) + [), where p(z) 
is the density distribution in the immobile fluid and ~ is the fluctuating density. Taking into account that at 
the point (z, z) and at a certain time a particle is situated that was initially present at the level z - ff and 
retaining terms of the first-order smallness, we have ~ = ~(Op/Oz). We represent the vertical displacement of 
the fluid particles in the wave in the form ~ = h(t)w(z), where h(t) is a harmonic function of time and w(z) 
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is an amplitude function. With the assumptions made, the a.c. output signal of the wavemeter can be written 
in the form 

z2 

= e ( t ) - e 0  = e l h ( t ) / - ~ ,  w(z )dz .  (1) 
Zl 

In the tests, the length of the probes was (z2 - zl) > 26, and the following equalities were fulfilled with 
a high degree of precision at the end points of the intervM of integration: p(za) = p2, p(z2) = pl, and 
pr(zl) = p'(z2) = 0. Static calibration of the wavemeters was carried out using their vertical displacement by 
a preset distance c in the immobile fluid. The corresponding change in the output voltage ec = elc(p2 - pl) 
results from (1) if we put h(t) = 1 and w(z)  = c. This value was used to normalize the amplitude of the 
change of ~. Thus, in measuring the wave intensity with the probes with vertical electrodes, the quantity 

z2 

is measured; this quantity has the dimension of length and represents the weighted pl(z) mean amplitude of 
the vertical displacement of a fluid particle in the wave. 

In the system of waves produced by the wave generator, the distribution w(z)  corresponded to the first 
internal mode of fluid wave motion. The measure of the intensity of these waves determined according to (2) 
is denoted by al. It is worth noting that in all the tests the amplitude of the waves was small (2al < 0.3 cm). 

During the passage of first-mode internal waves over an obstacle, generation of higher modes occurs. 
Moreover, because of nonlinear effects, the waves of the double frequency compared to the frequency of the 
incident waves (the second harmonics) are generated behind the cylinder. A spectral analysis of the output 
signal of the wavemeter, which measured the intensity of the waves behind the cylinder, allowed us to determine 
the amplitudes of the first and second harmonics. The corresponding measures of intensity are denoted by a2 
and a t . 

The quantity T = a2/al ,  which characterizes" the ratio of the intensities of the disturbed and 
undisturbed wave systems, is adopted as the coefficient of propagation for the first-harmonic waves. It should 
be noted that the above definition is not a strict one. For surface waves, the notion of the coefficient of 
propagation is introduced for the far-field asymptotic behavior of these waves, and this squared coefficient 
gives the proportion between the energies of the passed and incident waves. For continuous stratification, 
the diffraction phenomena become more complex, since in this case many modes of the wave system become 
involved in the problem. Based on the known properties of the distribution of the vertical velocity of fluid 
particles for various modes of internal waves [11], one can easily see that the main contribution to the quantity 
a determined according to (2) is due to the uneven modes. Separation of the contribution of each of the uneven 
modes in the case where probes with vertical electrodes are used is difficult. Nevertheless, the quantity T is a 
sufficiently informative integral estimate, and it can be used to compare the experimental data  with theoretical 
results. Doing it, one should take into account that the value of a depends on the phase shift between the 
oscillations of various modes. 

For a preset frequency w of the first-mode waves, their wavelength A depends appreciably on the 
thickness ~ of the pycnocline. In processing the experimental data, the following dispersion relationship was 
used [8, 11]: 

w 2 = ~gk/(coth  khl q- coth kh2 + k6), (3) 

where k = 27r/A is the wave number. Direct measurements showed that the above relationship held in the 
tests with good accuracy. Figure 2 presents the dependence w(k) for 6 = 6.2 cm [the solid curves and the 
points show the calculation results obtained using Eq. (3) and the experimental data, respectively]. 

Figure 3 shows the dependences of T on the dimensionless wave number k = kd for h = h/d  = 1, 
h~ = h l / d  = 2.5, and the values of the parameter 6 = 6 /d  equal to 0.42, 0.55, and 0.72 (curves 1-3). For this 
combination of parameters, the cylinder is surrounded by a fluid of constant density p2 for all values of 6. The 
dependences T(k) lie close together for all $ both qualitatively and quantitatively. In the experimental range 
of variation of 1r three minima and three maxima of T are seen. For short waves (]c > 2), the quantity T --~ 1 
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(the waves pass over the body without being disturbed). 
Figure 4 shows the data obtained for h = 0.75, hi = 2.5, and 6 = 0.25, 0.38, 0.53, 0.72, 0.83, and 1.03 

(curves 1-6, respectively). For this value of h, the cylinder partially overlaps with the pycnocline. The value 
of T equals unity for long waves (k .~ 0.5). The local maxima of T observed at high k are appreciably less 
than unity. However, the good coincidence between the positions of the characteristic points (the maxima and 
minima) in Figs. 3 and 4 is worth noting. As 6 increases, the value of T decreases markedly. In the short-wave 
range (k > 2), T tends to increase, its value, however, being under unity. For short waves, the pycnocline acts 
as a wave guide, and the cylinder is an obstacle in it. 

The effect of submergence of the cylinder into the pycnocline is illustrated by Fig. 5. The data were 
obtained for f~l = 2.5 and various values of h, 6 being practically constant (h = 1 and 6 = 0.58 for curve 1; 

= 0.75 and $ = 0.54 for curve 2, and h = 0.6, ~ = 0.58 for curve 3). The value of T decreases appreciably 
with decreasing h, and the decrease in T is more pronounced for short waves. 

In wave diffraction by obstacles, the nonlinear effects give rise to waves with frequency twice that of 
the incident waves. For the case of waves on the free surface of a homogeneous fluid, this phenomenon was 
studied in sufficient detail in [9, 12, 13], where the dependence of the intensity of the second-harmonic waves 
was addressed. It was shown that under certain conditions the amplitude of the second harmonic can be as 
high as that of the second harmonic. 

The nonlinear effects in the internal-wave diffraction have not been adequately studied. Some 
qualitative information on them was reported in [7, 8]. In contrast to surface waves, in a continuously stratified 
fluid there is a threshold value of ~ = Nm/2, where Nm is the maximum value of the Brunt-Vs163163 frequency 

N(z) = k/-(g/p)(Op/Oz). If the frequency of the incident waves w > g,n/2,  then the second-harmonic surface 
waves do not originate [8, 14]. In this connection, the determination of the range of dimensionless frequencies 
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= w/N,,, in which the waves of frequency 2w have the highest intensity, is of interest. 
Figure 6 shows the dependences of the coefficient of generation of the second-harmonic waves a'/al 

(circles), the value of T (triangles), and the dimensionless amplitude of the incident waves al/d (squares) 
on & for 6 = 0.42 and 0.55 (open and filled points, respectively). The data were obtained for h = 0.75 and 
]tl = 2.5. For surface waves of sufficiently small amplitude, the ratio a'/al varies in proportion to al [9, 13]. A 
similar dependence should also be expected for the case of internal waves. Since the amplitude and steepness 
of the incident waves in our experiments varied over a rather narrow range, the dependence of alia1 on 
gives a good indication of the range where the second-harmonic waves behind the cylinder are generated. It 
can be seen that  the maxima of the dependences a'/al on 5~ for different 6 lie at one and the same value of 
the dimensionless frequency &, = 0.34 which corresponds to different values of k, (k, = 0.68 for 6 = 0.42 
and k, = 0.54 for ~ = 0.55). The constant value of 5~, suggests the existence of a certain "resonant" regime 
of generation of the second-harmonic waves upon attaining a certain proportion between the wave number k' 
for the second-harmonic waves and the characteristic thickness (f of the pycnocline. For such short waves, the 
two fluid layers are infinitely deep. Using (3), it can be found that ~ ,  = 0.34 corresponds to k',6 = 2. 

It is worth noting that in a disturbed wave system that is combination of first-harmonic and second- 
harmonic waves, the local values of the wave steepness can far exceed the steepness of the incident waves. In 
our experiments, the maximum increase in the wave steepness was approximately threefold. 

The authors thank V. I. Bukreev and I. V. Sturova for a fruitful discussion of the results. 
This work was supported by the Foundation for Integration Programs of the Siberian Division of the 
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